

Royal Netherlands Meteorological Institute Ministry of Infrastructure and Water Management

on the use of daily S5p trace gas & aerosol observations for characterizing wildfires

Jos de Laat#

Royal Netherlands Meteorological Institute (KNMI)

Vincent Huijnen | KNMI | NL Niels Andela | Cardiff University | UK Matthias Forkel | Technical University Dresden | GE

CARDIFF

PRIFYSGOL

Christopher Marrs (GE) Christine Wessollek (GE) Alfred Awotwi (UK) Martin de Graaf (NL)

wildfires

- important contribution to the global carbon budget
- important for air quality
- numbers and intensity may increase in a warmer climate
- increased damages due to increased human activities in fire-prone areas
- wildfire (carbon) emissions are notoriously uncertain

ESA Sense⁴Fire project

wildfires

- satellite observations have played a crucial role in estimating wildfire (carbon) emissions
- use of (new) satellite observations is still underdeveloped and/or underused
- suite of **ESA sentinel** satellites provide new/additional wildfire-relevant information
 - fuel load
 - fuel moisture
 - vegetation type
 - spatio-temporal fire dynamics
 - trace gases
 - aerosols

The ESA **Sense⁴Fire** project (start fall 2021; 2+ years):

sentinel-5p

- launched October 2017
- designed to observe air quality
- legacy GOME/SCIAMACHY/OMI satellites
- much improved spatial resolution (3.5x5.5 km at best)
- much improved instrument-noise

allows for daily observations of emission plumes:

- NO₂, CO, absorbing aerosol index (AAI), aerosol height (ALH or O₂A/O₂O₂-based cloud tops), HCHO, CH₄, HONO

many studies on localized source published in the past years:

- power plants, industrial complexes, ships, etc.

wildfires:

- also well captured
- sentinel-5p data use for wildfire characterization is underdeveloped/underused (untapped information)
- NO₂ : high temperature burning
- CO : low temperature burning
- burning temperature > fuel load, fuel type, fuel moisture, combustion completeness, atmospheric conditions etc.

sentinel-5p

S5P identifies localized small fires NO₂, CO, AAI, ALH spatially consistent *example: Africa, 1 September 2021*

S5P: Amazon, Siberia

AMAZON

11 September 2019

~500 km region in the south equatorial Amazon

visual correlation enhanced AAI, NO₂, CO, cloud fraction

differences: NO₂ more localized than CO, AAI

CO, AAI lifetime/residence (days-weeks) time longer than NO₂ (hours)

visual correlation with SUOMI/NPP VIIRS Fire Radiative Power

SUOMI/NPP VIIRS

AMAZON

11 September 2019

TROPOMI S5P ratio tropospheric NO₂ column/AAI [g

55°W

51°W

52°W

TROPOMI S5P CO column 20190911

green circles = SUOMI/NPP VIIRS FRP

<u> 1</u>

NO₂/AAI ratio

53°V

55°W

TROPOMI S5P ratio AAI/CO column [qa > 50, cloudratio]

SUOMI-MPP VIIRS RGB 2019991 Duroe @ NASA EARTHDATA

AAI/CO ratio

SUOMI/NPP VIIRS

ESA Living Planet Symposium – Monday 23 May 2022 - Advance Future Technology for Earth Observation Missions - 16:40-16:55

 NO_2/CO ratio

11 September 2019

AMAZON CO vs AAI one month 2019

AMAZON CO vs NO₂ one month 2019

ESA Living Planet Symposium – Monday 23 May 2022 - Advance Future Technology for Earth Observation Missions - 16:40-16:55

 - ECMWF/CAMS IFS model simulations (CO, NO₂, ALH, possibly also HCHO) (poster 64809, Huijnen et al., Tuesday 17:00-19:00) - sub-grid plume chemistry parameterization - bottom-up emissions (different databases) - injection heights - chemistry scheme - spatial resolution - evaluation of small-scale fire **sentinel-5p** data with emissions based on sentinel (1)2-3 data - relation with emission characteristics, like fuel type, fuel load, FRP, soil moisture, etc.

- **Sentinel (1)2-3** data to reconstruct emission for selected regions (talk Andela et al., Friday 14:30-14:45)

- compare with **sentinel-5p** observations

- different fire regimes: Amazon, south-equatorial Africa, Siberia steppe, Siberia tundra (2019, 2020)

Explore:

- comparison ECMWF/CAMS IFS with sentinel-5p data

- ECMSF/CAMS IFS sensitivities:

(poster 64815, Forkel et al., Wednesday 17:00-19:00)

regional comparisons IFS-S5p NO₂ & CO

Aug-Sep 2020, five ~ 500 km regions: south equatorial Africa, south equatorial Amazonia, Siberia Tundra, Siberia Steppe, USA west coast comparison TROPOMI NO₂ and CO (x-axis) and IFS + GFAS NO₂ and CO (y-axis)

findings/conclusions

[1] visually coherent wildifre patterns in S5p CO, NO₂, AAI, and VIIRS FRP on a daily basis

- combination of AAI/CO to define plume extent
- different regimes, different correlations, different spatial extents
- plume extent + CO indicative of emitted carbon
- NO_2 indicative of burning efficiency

[2] Regional comparison IFS (GFAS) & S5p $NO_2 + CO$

- overestimating $NO_2 < -->$ underestimating CO (to be continued and explored ...)
- burning efficiency --> wildfire fuel characteristics

[fresh result] first indications that IFS comparison with S5p improves with emissions based on Sentinels (1)2+3

... and finally something unexpected from S5p ...

BONUS: fire information in S5p SWIR?

mysterious very localized daily S5p CH_4 reductions over fire hot spots (10-20% less CH_4)

- light pollution by fire? (Stefan-Boltzmann around 1000°C maximizes near 2 micron = SWIR)
- unknown/unaccounted spectral absorption by short lived trace gases? (analogy: S5p detection of HONO [Theys et al., BIRA])
- albedo effect? (effect is non-stationary so lasting < 24 h)
- aerosol shielding? (no CH₄ plume)
- burned? (how ?)
- unknown chemistry (how ?)

2021-07-13

ESA Living Planet Symposium – Monday 23 May 2022 - Advance Future Technology for Earth Observation Missions - 16:40-16:55

That's it, thank you for your attention !