To what extent affect three key uncertainties (emission factor, injection parameterisation and tracer lifetime) the top-down estimates on total carbon emissions released by fires?
Constraining carbon emissions from fire based on CO observations are to date subject to three major sources of uncertainties: assumptions on 1) emission factors, 2) dynamics of the emission process in the atmosphere and 3) tracer lifetime.
How do fires contribute to short- and long-term carbon emissions?
Continued pressure from land cover change, global warming and ecosystem fragmentation have led to increased concerns about the future role of forests in the global carbon cycle, potentially turning sink to source. Nevertheless, the limited understanding about “what” is burning has hampered robust analysis of the relative contributions from herbaceous and woody fuels along with long-term impacts on forested systems (e.g. tree mortality).
How do changes in land ecosystems affect fuel loads and fuel moisture and hence fire behaviour?
Fuel loads and fuel moisture content are important controls on fire dynamics. The spatial arrangement and size of forest, grass and bare patches controls the distance to (human) ignition sources (Parisien et al., 2016), affects microclimate and hence the drying of fuels, and the spread and size of fires (Hargrove et al., 2000).